查看原文
其他

【七年级】· 数学· 一元一次方程 · 解方程易错点分析及含参方程求解

张鼎文 老杨和数学的故事 2022-07-17

写在前面

由于期中考试需要考解一元一次方程,因此,将本章前三节中一些易错的内容做一个整理.主要包括方程的定义,解方程易错点,含参方程求解套路.关于本章,可以点击下面链接查看相关资源:

  本章已更新 

3.1 从算式到方程【七年级】数学微课 · 3.1.1 一元一次方程【七年级】数学微课 · 3.1.2 等式的性质

3.2 解一元一次方程(一)合并同类项与移项【七年级】数学微课 · 3.2.1 合并同类项解一元一次方程
【七年级】数学微课 · 3.2.2 移项解一元一次方程

3.3 解一元一次方程(二)去括号与去分母【七年级】数学微课 · 3.3.1 去括号解一元一次方程
【七年级】数学微课 · 3.3.2 去分母解一元一次方程【七年级】数学微课 · 3.3 解一元一次方程 培优微课【七年级】数学微课 · 3.3  解一元一次方程 小节测试
3.4 实际问题与一元一次方程【七年级】数学微课 · 3.4 (1)配套问题、工程问题
【七年级】数学微课 · 3.4 (2)利润问题、积分问题【七年级】数学微课 · 3.4 (3)电话计费问题、数字问题
全章复习课【七年级】第3章 一元一次方程 全章复习课(点击上面的文字,可跳转)

一、方程的定义

只含有一个未知数,且未知数的次数是1的整式方程,叫一元一次方程.

如ax+b=0这样的方程,必须满足一次项系数不为0a≠0,否则就没有未知项了,同时,有些题目会从次数上做文章,保证次数为1即可,若有二次项,三次项,则这些项的系数都为0.

例1

分析:

显然,我们要保证次数为1,且一次项系数不为0.

解答:

变式

分析:

与例1相同,要注意的是,这里要将方程移项变形成ax+b=0的形式,不难发现表面看去是二次方程,则二次项系数必为0,且一次项系数不为0.

解答:

二、解方程易错点

一元一次方程的解法都已经讲过,但错误却始终贯穿整个教学过程,分析一下,有以下几个易错点:

(1)移项不变号,或者移动的项不变号,只变不移动的项的号.

(2)去括号时,出现漏乘,尤其是括号内最后一项不乘括号外的系数.

(3)系数化为1时,结果与准确答案是互为倒数,应该两边同除以系数,或者乘上系数的倒数.

当然,需要去分母的方程,错误率就更高了,先选取2例.展示错解,方便改正.

例1

错解1:

同乘15得,x-5(x-1)=7-3(x+3)

错解2:

同乘15得,15x-5x-5=105-3x+9

分析:

去分母解方程要注意两点,

(1)等号两边的每一项都要乘各分母的最小公倍数,不要漏乘不含分母的项,尤其是常数.

(2)当分子是多项式时,去分母后分子作为整体,应加括号.

我们在计算时,不要怕麻烦,不妨每一步都认真写好,就不会错了.

正解:

例2

错解:

分析:

对于分母是小数的方程,我们要把它转化为分母是整数的方程,再求解.但是,将分母转化为整数,是利用了分数的基本性质,分数的分子分母同乘一个非零数,分数的值不变,因此,这里的3不能乘10.

正解:

★ 反思★

本题还有更快的做法吗,有!我们的目标是去分母,如果能使分母直接变成1,就可以直接去括号解决了,而0.2×5=1,0.5×2=1,因此各项的分子分母分别扩大五倍,两倍,达到直接去分母的目的.

巧解:

例3

分析:

显然,本题按照上述方法是可以做的,只不过较烦,能否有更快的方法呢?我们发现,分母分别为0.3,0.03,倘若每一项都乘0.3,不仅可以达到去分母的目的,而且常数项也变小了.做法更加巧妙.当然,这种做法仅限于学有余力的同学,基础一般的还是按照常规方法吧!

巧解:

三、含参方程求解套路

1、整数解问题

例1

当k取何整数时,关于x的方程2kx=kx+2(x+2)的解为正整数?

分析:

对于含参数的方程,我们一定还是要将方程先解出来,注意,只含有参数的项,移到右边,作为常数,同时含有参数和未知数的项,移到左边,确保合并同类项时,不要漏项,最后转化为以含有参数的代数式为系数的未知项.系数化为1时,两边同除以系数.即x用含参数的代数式来表示

而要使结果为整数,通常右边的代数式中,分子为整数,那么分母必为分子的因数

解答:

变式
若“解为正整数”改为“解为整数”,k=?
分析:解为整数,则分母k-2是分子4的因数,所以k-2=1,2,4,-1,-2,-4.所以k=3,4,6,1,0,-2.

例2

分析:

本题方法与上题一致,不过需要先去分母,注意两者都是正整数.

解答:

2.同解问题及变式

例1

分析:

同解问题,即两个方程的解相同,观察题目,第一个方程可解,因此可以将x的值解出来,代入到第二个方程中,将其转化为关于参数a的方程,从而求解.

解答:

★ 反思★

本题我们只能这样做吗?

当然不,第二个含参数的方程,依然可解,只需要将用含参数的代数式表示未知数即可,最后利用解相同,建立方程求解.对于两个都含有参数的方程,这是必须掌握的方法.

另解:

本讲思考题

参考答案:(请颠倒手机查看)

明天更新预告明天我们汇总《第3章 一元一次方程》的单元测试题。请及时关注。

延伸阅读:

第1章 有理数 教学资源

前面已更新完毕《第1章 有理数》全章微课:

【七年级】第1章 有理数 微课汇总及单元测试
【七年级】第1章 有理数 培优微课【七年级】第1章 有理数 单元测试(含培优试题)
【七年级】数学 · 有理数运算典型易错题分析(上)
【七年级】数学 · 有理数运算典型易错题分析(下)
【七年级】第1章 有理数 全国月考好题精选(点击上面的文字,可跳转)

第2章 整式的加减 教学资源

【七年级】第2章 整式的加减 全章微课及单元测试【七年级】第2章 整式的加减 拔高微课
【七年级】数学 · 2.1 整式 易错点讲解【七年级】数学微课 · 2.3 整式的实际应用
【七年级】数学 · 整式的加减—破解“项”的问题,学会分类讨论【七年级】数学 · 整式的加减—整体思想求值
【七年级】数学 · 第2章 整式的加减  作业错误分析
【七年级】数学 · 第2章 整式的加减 章节综合提升(点击上面的文字,可跳转)


老杨和数学的故事

微信号:YoungMath

老杨和数学的故事是初中教师、学生和家长的聚集地,我们专注于初中生数学教育和分享教育教学资讯主要内容有:抛物线压轴解析、初中数学同步教学微课(含配套练习)中招体育、理化生实验、化学微课、亲子沟通、学法指导等。立足数学,也谈其他。我们旨在分享资讯资源,促进全面发展。


 点击 阅读原文 获取更多~

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存